

B hadron decays and resonances at DØ

Denis Gelé, Institut Pluridisciplinaire Hubert Curien Strasbourg

On behalf of the DØ Collaboration

Tevatron

- Excellent performance of Tevatron in 2004 and 2005
- Highest luminosity delivered in DO (January 06): 1.6 10⁻³² cm⁻²s⁻¹
- Machine delivered more than 1.4 fb⁻¹
- Recorded luminosity in DØ: 1.2 fb⁻¹
- High data taking efficiency ~ 85%
- Current datasets analyzed: up to 1 fb-1 (to be compared with ~ 100 pb-1 for Run I)
- With 2-3 10⁻³²cm⁻²s⁻¹ expected
- \rightarrow 2 fb⁻¹ until 2006
- \rightarrow 4-8 fb ⁻¹ until 2009

The DØ detector

- Multipurpose detector dedicated to proton-antiproton collision @ 1.96 TeV
- Muon detector
 (central+forward) with good
 coverage (|η|<2). Single and
 dimuon robust triggers used in B
 physics analysis.
- Silicon and fiber tracker in 2T solenoid with coverage up to $|\eta|=3$.
 - $\sigma(DCA)$ = 16µm @ P_T= 10 GeV innermost layer silicon detector being installed for RunIIb
- Calorimeter (EM+hadronic) used for electron flavor tagging.

B physics

- Large X-section (>104 times larger than B-factories)
- All B species produced $(B^{\pm}, B_d, B_c, B_s, \Lambda_b, ...)$

Inelastic QCD background very important requiring efficient trigger and reliable tracking and vertexing

Large variety:

Production properties ($\sigma(b)$, $\sigma(J/\psi)$... B branching ratios Lifetimes ($\Delta\Gamma$, B^{\pm} , B_d , B_c , B_s , ...) Spectroscopy (B^* , B^{**}) Mass measurements (B_c , Λ_b , B_s ,...) Mixing (B_d , B_s) Rare decay searches ($B \rightarrow \mu\mu/\mu \Phi$) New particles X(3872), pentaquarks New physics ?

Focus on spectroscopy, rare decays and lifetime new results (mainly with 1 fb^{-1} and Bs mesons).

B mesons spectroscopy (1)

Naming convention and motivation:

- (bd) quark system : $B_J = B_d^{**} = \{ B_1, B_2^{**} \}$ (bs) quark system : $B_{sJ} = B_s^{**} = \{ B_{s1}, B_{s2}^{**} \}$
- Spectroscopy of B mesons is not well studied
- All previous results of the narrow L=1 states B_1 and B_2 * have been indirect and performed with low statistics and/or limited precision.
- Masses, widths and decay branching fractions of these states can be compared with theory (chiral quark model: hep-ph/01042208).

 \rightarrow measure precisely the masses and production rates of $B_{\rm J}$ mesons, observe and measure mass of $B_{\rm sJ}$ state.

B mesons spectroscopy (2)

- Good qualitative understanding of B_0^* , B_1^* , B_1 and B_2^* . B_0^* and B_1^* decay through S-wave but large decay width \rightarrow difficult to distinguish from phase space.
- B₁ and B₂* decay through D-wave and should be narrow (~ 10 MeV)
- \rightarrow search for B_J states decaying to B^{+(*)} π with exclusively reconstructed B mesons:

$$B_1 \rightarrow B^{+*} \pi^{-}$$
 (100%)
 $B_2^* \rightarrow B^+ \pi^{-}$ (50%)
 $\rightarrow B^{*+} \pi^{-}$ (50%)

 B^+ V (realease of an undetected photon of 45.78 \pm 0.35 MeV)

For $B_{s,T}: B_{s,T} \rightarrow B^{+(*)} K^{-}$

In both case, $B^{\scriptscriptstyle +} \to J/\Psi \ K^{\scriptscriptstyle +} \to \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -} \ K^{\scriptscriptstyle +}$

Analysis of B_J states: Reconstruction/Selection

Search for narrow states decaying to B⁺ \rightarrow J/ Ψ K⁺ with J/ Ψ \rightarrow μ ⁺ μ ⁻

B+ selection:

Good B+ vertex + kinematical cuts + likelihood ratio method

B_{T} selection:

For each B hadron, an additionnal track with

- · P_T > 0.75 GeV
- Correct charge correlation $(B^+\pi^- \text{ or } B^-\pi^+)$
- •Since B_J decays immediately after production track was required to originate from primary vertex.

Analysis of B_J states: ΔM results

The distribution of the mass difference $\Delta M = M(B^+\pi^-) - M(B^+)$ can be interpreted in terms of B_J transitions.

Fitting with

N {
$$f_1 G(\Delta M, E_1, \Gamma_1) +$$

 $(1-f_1)f_2 G(\Delta M, E_2, \Gamma_2) +$
 $(1-f_1)(1-f_2) G(\Delta M, E_3, \Gamma_2)$ } +
 $F_{bkg}(\Delta M)$
With

 $G: Convolution of a relativistic Breit-Wigner function with the experimental resolution on <math>\Delta M$.

3 peak structure

 Γ : mass width of the state (models predict $\Gamma 1 \sim \Gamma 2 \to \Gamma 1 = \Gamma 2$ in the fit), E energy of the transition (ΔM)

 f_1 : fraction of B_1 contained in the B_J sample, f_2 is the fraction of $B_2 * \to B^*\pi$ decay in $B_2 *$ signal.

Analysis of B_J states: final results

The B_1 and $B_2^{\,*}$ are observed for the first time as two separate objects. Their masses and their average width were measured to be:

```
M(B_1) = 5720.8 \pm 2.5 \text{ (stat)} \pm 5.3 \text{ (sys)} \text{ MeV}
M(B_2^*) - M(B_1) = 25.2 \pm 3.0 \text{ (stat)} \pm 1.1 \text{ (sys)} \text{ MeV}
\Gamma(B_1) = \Gamma(B_2^*) = 6.6 \pm 5.3 \text{ (stat)} \pm 4.2 \text{ (sys)} \text{ MeV}
The branching ratio of B_2^* to the excited state B^* was measured as: Br(B_2^* \to B^* \pi)/Br(B_2^* \to B^{(*)} \pi) = 0.513 \pm 0.092 \text{ (stat)} \pm 0.115 \text{ (sys)}
The fraction of the B_J sample in the state B_I was measured as: Br(B_1 \to B^* \pi)/Br(B_J \to B^{(*)} \pi) = 0.545 \pm 0.064 \text{ (stat)} \pm 0.071 \text{ (sys)}
The B_J production rate is measured as a fraction of B^* rate: Br(b \to B^0_J \to B \pi)/Br(b \to B^*) = 0.165 \pm 0.024 \text{ (stat)} \pm 0.028 \text{ (sys)}
```

Analysis of B_{sJ} states: B_{s2}*

- Similary to B^{**} , chiral quark models predicts 2 wide $(B_{s0}^*$ and B_{s1}^*) and 2 narrow $(B_{s1}$ and B_{s2}^*) bound P-states in (bs) system.
- Due to isospin conservation, the decay to $B_s\pi$ is highly suppressed.
- Search for excited state decaying to B⁺K⁻

Very similar to previous B_J search:

For each B hadron, an additionnal track:

P_T > 0.6 GeV

Charge opposite to charge of B+

Track originate from primary vertex

Kaon mass assigned to the track

Analysis of B_{sJ} state: Results

Mass difference

$$\Delta M = M(B^+K^-) - M(B^+) - M(K^-)$$

Significance of signal > 5

First direct observation of B_{s2}*

Wrong charge sign correlations show no evidence of a peak

MC B_J decaying to $B^{(*)}\pi$ but reconstructed as B^+K^- show no evidence of a peak

$$M(B_{s2}^*) = 5839.1 \pm 1.4(stat) \pm 1.5(sys) MeV$$

The observed peak in the $B^+\pi^-$ distribution is interpreted as the decay:

$$B_{s2}^{*} \rightarrow B^{+}K^{-}$$
 M(BK) - M(B) = 66.4 MeV

Note: $B_{s2}^* \to B^{*+}K^-$ decay predicted by theory would produce a signal at ~ 20 MeV strongly suppressed (small mass difference + suppression factor due to L=2). Absence of B_{s1} meson in ΔM : Theory predicts $M(B_2^*) - M(B_1) \approx 25.2$ MeV $\to B_{s1}$ decaying to $B^{*+}K^-$ is forbidden since $M(B_{s1}) < M(B^{*+}) + M(K^-)$

Searches for rare B_s decay

The decay $B_s \to \mu^+\mu^-$ is a FCNC process \to forbidden in SM at tree level and proceeds through very low rate in higher order diagrams.

Ex:
$$Br_{SM}(B_s \rightarrow e^+e^-) = (8.15 \pm 1.29).10^{-14}$$

 $Br_{SM}(B_s \rightarrow \mu^+\mu^-) = (3.42 \pm 0.54).10^{-9}$

- → a signal would indicate new physics (SUSY, MSSM, etc...)
- *Blind" analysis with $300+400~\rm pb^{-1}$ (secondary 3D-vertex built from two opposite charged tracks + discriminating variables (isolation of B_s, trans. decay length significance,...))
- Signal was optimized with random grid search
- 4.3±1.2 expected background events (for 300 pb⁻¹) and 4 events found after selection

and 4 events found after selection Calculate Br using the $B^+ \rightarrow J/\Psi \ K^+$ as normalisation channel

→
$$Br(B_s \to \mu^+ \mu^-) \le 2.3(1.9).10^{-7}$$
 at 95(90)% CL for 700 pb⁻¹

Another channel : Br(Bs $\to \mu + \mu - \Phi$) $\leq 4.1(3.2).10^{-6}$ at 95(90)% CL (assuming Br(Bs $\to J/\Psi \Phi$) = 5.88±0.1 %)) for 300pb⁻¹

B_s Lifetime

In the SM, the mass eigenstates of B_s mesons (B_s^H and B_s^L) are linear combinations of <u>fla</u>vor eigenstates ($|B_s^0\rangle$ and $|B_s^0\rangle$): $|B_s^H\rangle = p |B_s^0\rangle - q |B_s^0\rangle - q |B_s^0\rangle + q |B_s^0\rangle + q |B_s^0\rangle + q |B_s^0\rangle + q |B_s^0\rangle$ and approximately CP eigentstates.

Def: $\Delta m = m_H - m_L$, $\Delta \Gamma = \Gamma_L - \Gamma_H$, $\Gamma = (\Gamma_L + \Gamma_H)/2$ B_s mesons are produced in an equal mixture of B_s^H and B_s^L and its decay length is described by:

 $\exp(-\Gamma_H t) + \exp(-\Gamma_L t)$ with $\Gamma_{L,H} = \Gamma \pm \Delta \Gamma/2$ instead of $\exp(-\Gamma t)$ (assuming a single lifetime)

Analysis:

Reconstruction of semileptonic decay $B_s \rightarrow D_s^- \mu + VX$, $D_s^- \rightarrow \Phi \pi^-$, $\Phi \rightarrow K^+ K^-$

Good Ds vertex

+ kinematical cuts (P_T , mass, helicity angle) required

B_s Lifetime

- Combinatorial (from sideband D_s signal sample) + non-combinatorial (physical processes) background
- The pseudo-proper decay length is defined as:

PPDL =
$$L_{xy} m(B_s)/P_T(D_s^-\mu^+)$$

= $c\tau/K$

K correction factor = $P_T(D_s^-\mu^+)/P_T(B_s)$ (accounts for V/non-rec. charged particles)

The PPDL distribution is fitted using an unbinned maximum likelihood method (assuming single lifetime), 10 free parameters ($c\tau$, bkg description, scale factors)

 PDF_{signal} = decay exp. \otimes Gaussian res. + smearing with K factor

PDF_{bkq} = sum of bkg lifetime component ⊗ Gaussian res

 $\tau(B_s^0) = 1.420 \pm 0.043(stat) \pm 0.057(sys) ps$

400 pb⁻¹

Analysis of $\Delta\Gamma$ (1)

- Study of the decay chain $B_s^0 \to J/\Psi \Phi$, $J/\Psi \to \mu^+\mu^-$, $\Phi \to K^+K^-$ giving rise to both CP = +1 and CP = -1 final states
- \rightarrow possibility to separate the 2 CP components and measure $\Delta\Gamma$ through simultaneous study of time evolution and angular decay products of J/Ψ and $\Phi.$
- Analysis: selection and reconstruction of 0.8 fb⁻¹
- A simultaneous unbinned maximum likelihood fit to the B_s^0 candidate mass, PDL, and 3 decay angles describing the angular distribution of both J/Ψ and Φ final states in transversity basis.

Analysis of $\Delta\Gamma$ (2)

Preliminary results (with 0.8 fb⁻¹)
 In the limit of NO CP violation:

 $\Delta\Gamma = 0.15 \pm 0.10 \pm 0.03_{0.04} \text{ ps}^{-1}$

$$\tau(B_s)$$
 = 1.53 ± 0.08 ± $^{0.01}_{0.04}$ ps
= 1.450 ± 0.058 ps ($\Delta\Gamma$ = 0)
CP violating interference term is
consistent with NO CP violation in
the (B_s^0 , $\overline{B_s^0}$) system. (statistical
precision of the estimate of CP violating
angle $\delta\Phi$ = -0.9 ± 0.7)

World average based on flavor specific decays consistent with SM

theory

Conclusion

- B physics = large possibility of new measurements
- First results with 1 fb⁻¹ in D0, very impressive
- · Future is a gold mine for B physics

Back up slides

B_J and B_{sJ}: Theoretical predictions

	Eichten, Hill, Quigg FERMILAB- CONF-94/118-T	Di Pierro, Eichten Hep- ph/0104208	Ebert, <i>G</i> alkin Phys. Rev. D57, 5663, 1998	Orsland, Hogaasen, Eur. Phys. J. C9, 503,1999
$M(B_1)$ MeV	5759	5714	5719	5623
M(B ₂ *) MeV	5771	5742	5733	5637
M(B _{s1}) MeV	5849	5820	5831	5718
M (B _{s2} *) MeV	5861	5842	5844	5732

Relativistic quark model

Denis Gelé - DIS2006 - 20-24 April 2006

HQET

MIT bag

model

B_J states: B⁺ selection in detail

• B+ reconstructed in the exclusive decay B+ \rightarrow J/ Ψ K+, J/ Ψ \rightarrow $\mu\mu$:

Muons identified with standard muon identification tools $Pt(\mu)>1.5~GeV$

Two muons should form a common vertex with mass > 2.8 and < 3.35 GeV

Additionnal charged track with Pt>0.5 GeV with kaon mass assignement

Good common vertex with the 2 muons (chisquare cut) displaced (L/ σ (L) >3) w.r.t PV

Then B⁺ is reconstructed from these 3 particles.

The reconstructed track associated to the B⁺ should originate from the PV with a significance maxi cut.

Final B⁺ selection is performed through a likelihood ratio method combining the

following discrimanating variables:

Transverse momentum of the K

Minimal transverse momentum of the 2 muons

 χ^2 of the B⁺ decay vertex

B+ decay length divided by its error

Significance of the B+

Significance of the Kaon w.r.t the PV

B_J states: fitting detail

Following this expected pattern, the experimental distribution was fitted by the following function:

$$F(\Delta M) = F_{sig}(\Delta M) + F_{back}(\Delta M)$$

$$F_{sig}(\Delta M) = N \cdot (f_1 \cdot G(\Delta M, \Delta_1, \Gamma_1) + (1 - f_1) \cdot (f_2 \cdot G(\Delta M, \Delta_2, \Gamma_2) + (1 - f_2) \cdot G(\Delta M, \Delta_3, \Gamma_2))).$$
(7)

In these equations, Γ_1 and Γ_2 are the widths of B_1 and B_2^* , f_1 is the fraction of B_1 contained in the B_J signal and f_2 is the fraction of $B_2^* \to B^*\pi$ decay in B_2^{*0} signal. The parameter N gives the total number of observed $B_J \to B^{+(*)}\pi$ decays. The background $F_{back}(\Delta M)$ was parameterized by a fourth-order polynomial.

The function $G(x, x_0, \Gamma)$ is the convolution of the relativistic Breit-Wigner function with the experimental resolution in ΔM (parameterized by the double Gaussian function calculated from simulation):

$$G(x, x_0, \Gamma_0) = \frac{1}{N_0} \int Res(\sigma_1, \sigma_2, x', x, S) \cdot \frac{x_0 \Gamma(x)}{(x'^2 - x_0^2)^2 + x_0^2 \Gamma^2(x)} dx'$$
(8)

$$Res(\sigma_1, \sigma_2, x, \hat{x}, S) = \frac{1}{\sqrt{2\pi}\sigma_1} \cdot \frac{1}{S+1} \exp\left(\frac{-(x-\hat{x})^2}{2\sigma_1^2}\right) + \frac{1}{\sqrt{2\pi}\sigma_2} \cdot \frac{S}{S+1} \exp\left(\frac{-(x-\hat{x})^2}{2\sigma_2^2}\right)$$
(9)

$$N_0 = \int \frac{x_0 \Gamma(x)}{(x^2 - x_0^2)^2 + x_0^2 \Gamma^2(x)} dx \tag{10}$$

$$\Gamma(x) = \Gamma_0 \frac{x_0}{x} \left(\frac{k}{k_0}\right)^{2L+1} F^{(L)}(k, k_0) \quad (L=2)$$
(11)

$$F^{(2)}(k,k_0) = \frac{9+3(k_0r)^2 + (k_0r)^4}{9+3(kr)^2 + (kr)^4}$$
(12)

The variables k, k_0 in (11-12) are the magnitude of the pion three-momentum in the B_J rest frame when B_J has a four-momentum-square equal to x^2 and x_0^2 respectively, $F^{(2)}(k, k_0)$ is the Blatt-Weiskopf form factor for L=2 decay [15] and r=5 (GeV/c)⁻¹ is a B hadron mass scale. The widths σ_1 and σ_2 , and the scale parameter S, are fixed from the simulation.

All theoretical models predict that the widths Γ_1 and Γ_2 of B_1 and B_2^* are almost equal. Therefore, they were set to be equal in the fit: $\Gamma_1 = \Gamma_2 = \Gamma$. In addition, the mass difference of B^* and B^+ was fixed at the PDG value of

B_J states: systematic errors

TABLE III: Systematic uncertainties of relative B_J production rate				
source	$d(R_A)$			
Number of B_J events	0.023			
Number of B^+ events	0.001			
Momentum difference	0.007			
Uncertainty in resolution	0.015			
π reconstruction efficiency	0.004			
Total	0.028			

Major contributions:

- Background parametrization
- Fitting range
- · Bin widths/position
- · Γ free in the fit

B_{SJ} states: systematic errors

	TABLE I: Systematic uncertainties in the B_{s2}^{st0} mass.	
source	δ.	$\overline{M(B_{s2}^{*0}) \text{ (MeV/}c^2)}$
Fitting Procedure		1.0
Cut on p_T of kaon		1.1
Momentum scale		0.1
Total		1.5

Searches for rare B_s decay (detail)

- Decay channel $B_s \to \mu^+\mu^-\Phi$ is also an exclusive FCNC decay. Within the SM, it can only occur through electroweak penguin and box diagrams (decay rate ~ 1.6 10^{-6})
- Analysis is very similar to the previous one, the Φ meson is reconstructed through its K^+K^- decay.
- · Calculation of the branching fraction limit for $B_s \to \mu^+\mu^-\Phi$ is done by normalizing with the $B_s \to J/\Psi \Phi$ signal.
- 1.6 ± 0.4 expected background
 0 signal events

→ Br(B_s→
$$\mu^+\mu^-\Phi$$
) ≤ 4.1(3.2).10⁻⁶ at 95(90)% CL

(assuming Br(B_s \rightarrow J/ Ψ Φ) = 5.88±0.1 %))

Expected upper limit for rare B decays

Calculation of the sensitivity (= expected uppper limit on the Br): Assuming N_{back} background events, we calculate for each possible value of observations N_{obs} a 95% CL upper limit $\mu(N_{obs}, N_{back})$. The average upper limit on the signal events is obtained by weighting each limit from the hypothetical ensemble by its poisson probability of occurrence:

$$\langle \mu(n_{back}) \rangle = \sum_{n_{obs}=0}^{\infty} \mu(n_{obs}, n_{back}) \cdot \frac{(n_{back})^{n_{obs}}}{(n_{obs})!} \exp(-n_{back}).$$

To translate this into a 95% CL upper limit on the Br, the number of $B^\pm \to J/\Psi(\mu\mu)K^\pm$ has been used as normalization, then:

$$\begin{split} & \underbrace{\left\langle \mathcal{B}(B_s^0) \right\rangle \cdot \left(1 + R \cdot \frac{\epsilon_{\mu\mu}^{B_d^0}}{\epsilon_{\mu\mu}^{B_s^0}} \cdot \frac{b \to B_d^0}{b \to B_s^0} \right) =} \\ & \underbrace{\frac{\left\langle \mu(n_{back}) \right\rangle}{N_{B^\pm}} \cdot \frac{\epsilon_{\mu\mu}K}{\epsilon_{\mu\mu}^{B_s^0}} \cdot \frac{b \to B^\pm}{b \to B_s^0} \cdot \mathcal{B}(B^\pm \to J/\psi K^\pm) \cdot \mathcal{B}(J/\psi \to \mu\mu)} \end{split}$$

B_S lifetime: fitting in detail

Background probability density function, defined for each measured PPDL:

$$\mathcal{F}_{bg}^{j}(\lambda_{j}, \sigma(\lambda_{j})) = (1 - f_{+} - f_{+} - f_{-})G(\lambda_{j}, \sigma(\lambda_{j}))$$

$$+ f_{+} \frac{e^{-\lambda_{j}/\lambda^{+}}}{\lambda^{+}} + f_{++} \frac{e^{-\lambda_{j}/\lambda^{++}}}{\lambda^{++}} \qquad (\lambda_{j} \geq 0)$$

$$+ f_{-} \frac{e^{\lambda_{j}/\lambda^{-}}}{\lambda^{-}} \qquad (\lambda_{j} < 0),$$

f fractions of events in the exponential decays with positive-long, positive-short, negative-long, negative-short PPDL. λ : slope of exponential decays. Signal probability distribution function:

$$\mathcal{F}^{j}_{sig}(\lambda_{j}, \sigma(\lambda_{j}), s_{1}) = \int dK \, \mathcal{H}(K) \, \left[\frac{K}{c\tau(B_{s}^{0})} e^{-K\lambda_{j}/c\tau(B_{s}^{0})} \otimes \mathcal{G}(\lambda_{j}, \sigma(\lambda_{j}), s_{1}) \right],$$

Analysis of $\Delta\Gamma/\Gamma$: signal parametrization

In transversity basis:

$$\frac{d^{3}\Gamma(t)}{d\cos\theta} \frac{d}{d\varphi} \frac{1}{d\cos\psi} \propto 2|A_{0}(0)|^{2}e^{-\Gamma_{L}t}\cos^{2}\psi(1-\sin^{2}\theta\cos^{2}\varphi)$$

$$+\sin^{2}\psi\{|A_{\parallel}(0)|^{2}e^{-\Gamma_{L}t}(1-\sin^{2}\theta\sin^{2}\varphi)+|A_{\perp}(0)|^{2}e^{-\Gamma_{H}t}\sin^{2}\theta\}$$

$$+\frac{1}{\sqrt{2}}\sin2\psi|A_{0}(0)||A_{\parallel}(0)|\cos(\delta_{2}-\delta_{1})e^{-\Gamma_{L}t}\sin^{2}\theta\sin2\varphi$$

$$+\left\{\frac{1}{\sqrt{2}}|A_{0}(0)||A_{\perp}(0)|\cos\delta_{2}\sin2\psi\sin2\theta\cos\varphi\right.$$

$$-|A_{\parallel}(0)||A_{\perp}(0)|\cos\delta_{1}\sin^{2}\psi\sin2\theta\sin\varphi\right\}\frac{1}{2}\left(e^{-\Gamma_{H}t}-e^{-\Gamma_{L}t}\right)\delta\phi.$$

In the J/ Ψ restframe, transversity polar and azimuthal angles (θ , ϕ) describes direction of the μ^+ , and Ψ is the angle between the K⁺ direction and -J/ Ψ direction in the Φ meson rest frame. The quantity $\delta\Phi$ (about 0.03 in the SM) is a CP-violating weak phase due to interference effects between mixing and decay.

Analysis of $\Delta\Gamma/\Gamma$: Transversity angle

Transversity angle from the fit projection:

0.8 fb⁻¹

Measurement of Br($B_s^0 \rightarrow D_s^{(*)} D_s^{(*)}$)

• Motivation: $B_s^0 \rightarrow D_s^{(*)} D_s^{(*)}$) decay predominantly CP even and

$$2Br(B_s^0 \to D_s^{(*)}D_s^{(*)}) \approx \frac{\Delta\Gamma}{\Gamma\cos\phi}(1 + O(\frac{\Delta\Gamma}{\Gamma}))$$

where $D_s^{(*)}$ = { D_s , D_s^{*} }, one $D_s \to \Phi \pi$ and the other $D_s \to \Phi \pi \mu$. Selection of a μD_s sample with $D_s \to \Phi \pi$ and with an additionnal Φ meson $\to \mu \Phi D_s$ sample:

Using an unbinned likelihood fit and an estimate of background (combinatorial + physical processes) DO derives the number of signal events:

$$N(\mu D_s)$$
 = 15225 \pm 310 and $N(\mu \Phi D_s)$ = 19.34 \pm 7.85

From the knowledge of $Br(D_s \to \Phi \mu V)$, $Br(B_s^0 \to \mu V D_s^{(*)})$, the new Babar $Br(D_s \to \Phi \pi)$ and a ratio of efficiencies , one obtains:

$$Br(B_s^0 \to D_s^{(*)} D_s^{(*)}) = 0.071 \pm 0.035(stat)^{+0.029} (sys)$$

Then:
$$\Delta\Gamma_{CP}/\Gamma$$
 (B_s⁰) = 0.142 ± 0.064(stat) +0.058_{-0.050} (sys)

